Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.041
Filtrar
1.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612992

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the linchpin in the development of NAFLD. In our research, the impact of Lactiplantibacillus plantarum ZDY2013 administration for 12 weeks on gut microbiota dysbiosis induced by a high-fat, high-fructose, high-cholesterol (FHHC) diet in male C57BL/6n mice was investigated. Research results presented that the intervention of L. plantarum ZDY2013 in mice fed with the FHHC diet could restore their liver function and regulate oxidative stress. Compared to mice in the model group, the intervention of L. plantarum ZDY2013 significantly regulated the gut microbiota, inhibited the LPS/NF-κB pathway, and led to a lower level of colonic inflammation in the mice administered with L. plantarum ZDY2013. It also improved insulin resistance to regulate the PI3K/Akt pathway and lipid metabolism, thereby resulting in reduced fat accumulation in the liver. The above results suggest that the intervention of L. plantarum ZDY2013 can hinder the progression of diet-induced NAFLD by reducing inflammation to regulate the PI3K/Akt pathway and regulating gut microbiota disturbance.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Resistência à Insulina , Lactobacillus plantarum , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Frutose , Inflamação/tratamento farmacológico
2.
Nutrients ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542804

RESUMO

We aimed to identify the mechanism underlying the preventive effects of non-alcoholic fatty liver disease (NAFLD) through Platycodi Radix consumption using liver proteomic and bioinformatic analysis. C57BL/6J mice were categorized into three groups: those receiving a standard chow diet (NCD), those on a high-fat diet (HFD), and those on an HFD supplemented with 5% Platycodi Radix extract (PRE). After a 12-week period, PRE-fed mice exhibited a noteworthy prevention of hepatic steatosis. Protein identification and quantification in liver samples were conducted using LC-MS/MS. The identified proteins were analyzed through Ingenuity Pathway Analysis software, revealing a decrease in proteins associated with FXR/RXR activation and a concurrent increase in cholesterol biosynthesis proteins in the PRE-treated mouse liver. Subsequent network analysis predicted enhanced bile acid synthesis from these proteins. Indeed, the quantity of bile acids, which was reduced in HFD conditions, increased in the PRE group, accompanied by an elevation in the expression of synthesis-related proteins. Our findings suggest that the beneficial effects of PRE in preventing hepatic steatosis may be mediated, at least in part, through the modulation of FXR/RXR activation, cholesterol biosynthesis, and bile acid synthesis pathways.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Cromatografia Líquida , Proteômica , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Colesterol/metabolismo , Ácidos e Sais Biliares/metabolismo
3.
Phytomedicine ; 127: 155478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452696

RESUMO

BACKGROUND: The increasing incidence of nonalcoholic fatty liver disease (NAFLD) has urged the development of new therapeutics. NAFLD is intimately linked to gut microbiota due to the hepatic portal system, and utilizing natural polysaccharides as prebiotics has become a prospective strategy for preventing NAFLD. Smilax china L. polysaccharide (SCP) possesses excellent hepatoprotective and anti-inflammatory activity. However, its protective effects on NAFLD remains unclear. PURPOSE: The goal of this study was to explore the protective effects of SCP on high-fat diet (HFD)-induced NAFLD mice by regulating hepatic fat metabolism and gut microbiota. METHODS: Extraction and isolation from Smilax china L. rhizome to obtain SCP. C57BL/6 J mice were distributed to six groups: Control (normal chow diet), HFD-fed mice were assigned to HFD, simvastatin (SVT), and low-, medium-, high-doses of SCP for 12 weeks. The body, liver, and different adipose tissues weights were detected, and lipids in serum and liver were assessed. RT-PCR and Western blot were used to detect the hepatic fat metabolism-related genes and proteins. Gut microbiota of cecum contents was profiled through 16S rRNA gene sequencing. RESULTS: SCP effectively reversed HFD-induced increase weights of body, liver, and different adipose tissues. Lipid levels of serum and liver were also significantly reduced after SCP intervention. According to the results of RT-PCR and western blot analysis, SCP treatment up-regulated the genes and proteins related to lipolysis were up-regulated, while lipogenesis-related genes and proteins were down-regulated. Furthermore, the HFD-induced dysbiosis of intestinal microbiota was similarly repaired by SCP intervention, including enriching beneficial bacteria and depleting harmful bacteria. CONCLUSION: SCP could effectively prevent HFD-induced NAFLD, might be considered as a prebiotic agent due to its excellent effects on altering hepatic fat metabolism and maintaining gut microbiota homeostasis.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Smilax , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Fígado , Metabolismo dos Lipídeos , Polissacarídeos/farmacologia , China
4.
Mol Nutr Food Res ; 68(7): e2400062, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506156

RESUMO

Obesity is a global health issue characterized by the excessive fat accumulation, leading to an increased risk of chronic noncommunicable diseases (NCDs), including metabolic dysfunction-associated fatty liver disease (MAFLD), which can progress from simple steatosis to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, there are no approved pharmacological protocols for prevention/treatment of MAFLD, and due the complexity lying beneath these mechanisms, monotherapies are unlikely to be efficacious. This review article analyzes the possibility that NCDs can be prevented or attenuated by the combination of bioactive substances, as they could promote higher response rates, maximum reaction results, additive or synergistic effects due to compounds having similar or different mechanisms of action and/or refraining possible side effects, related to the use of lower doses and exposures times than monotherapies. Accordingly, prevention of mouse MAFLD is observed with the combination of the omega-3 docosahexaenoic acid with the antioxidant hydroxytyrosol, whereas attenuation of mild cognitive impairment is attained by folic acid plus cobalamin in elderly patients. The existence of several drawbacks underlying published monotherapies or combined trials, opens space for adequate and stricter experimental and clinical tryouts to achieve meaningful outcomes with human applicability.


Assuntos
Carcinoma Hepatocelular , Ácidos Graxos Ômega-3 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Doenças não Transmissíveis , Idoso , Humanos , Animais , Camundongos , Doenças não Transmissíveis/prevenção & controle , Antioxidantes , Hepatopatia Gordurosa não Alcoólica/prevenção & controle
5.
J Nutr Biochem ; 127: 109607, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432453

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with obesity and diabetes prevalence. The use of natural compounds has become an attractive approach to prevent NAFLD and its progression. Gamma-oryzanol (Orz) is a natural compound whose beneficial effects on chronic metabolic diseases have been reported. Therefore, we aimed to investigate the preventive effect of Orz on the hepatic proteome in a diet induced NAFLD model. Wistar rats were randomly distributed into three experimental groups (n=6/group) according to the diet received for 30 weeks: Control group, high sugar-fat (HSF) group, and HSF+Orz group. The isolated Orz was added to the chow at the dose of 0.5% (w/w). We evaluated the nutritional profile, characterized the presence of steatosis through histological analysis, triglyceride content in liver tissue and hepatic inflammation. Next, we performed label-free quantitative proteomics of hepatic tissue. Network analysis was performed to describe involved protein pathways. NAFLD induction was characterized by the presence of hepatic steatosis. Orz prevented lipid accumulation. The compound prevented alterations of the hepatic proteome, highlighted by the modulation of lipid metabolism, inflammation, oxidative stress, xenobiotic metabolism, and the sirtuin signaling pathway. It was possible to identify key altered pathways of NAFLD pathophysiology modulated by Orz which may provide insights into NAFLD treatment targets.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Fenilpropionatos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteoma/metabolismo , Proteômica , Ratos Wistar , Fígado/metabolismo , Dieta , Metabolismo dos Lipídeos , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos
6.
BMC Genomics ; 25(1): 190, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369486

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common cause of chronic liver disease in children and adolescents, but its etiology remains largely unknown. Adrenarche is a critical phase for hormonal changes, and any disturbance during this period has been linked to metabolic disorders, including obesity and dyslipidemia. However, whether there is a causal linkage between adrenarche disturbance and the increasing prevalence of NAFLD in children remains unclear. RESULTS: Using the young female rat as a model, we found that the liver undergoes a transient slowdown period of growth along with the rise of adrenal-derived sex steroid precursors during adrenarche. Specifically blocking androgen actions across adrenarche phase using androgen receptor antagonist flutamide largely increased liver weight by 47.97% and caused marked fat deposition in liver, thus leading to severe NAFLD in young female rats. Conversely, further administrating nonaromatic dihydrotestosterone (DHT) into young female rats across adrenarche phase could effectively reduce liver fat deposition. But, administration of the aromatase inhibitor, formestane across adrenarche had minimal effects on hepatic de novo fatty acid synthesis and liver fat deposition, suggesting adrenal-derived sex steroid precursors exert their anti-NAFLD effects in young females by converting into active androgens rather than into active estrogens. Mechanistically, transcriptomic profiling and integrated data analysis revealed that active androgens converted from the adrenal sex steroid precursors prevent NAFLD in young females primarily by inactivating hepatic sterol regulatory element-binding transcription factor 1 (Srebf1) signaling. CONCLUSIONS: We firstly evidenced that adrenarche-accompanied rise of sex steroid precursors plays a predominant role in preventing the incidence of NAFLD in young females by converting into active androgens and inactivating hepatic Srebf1 signaling. Our novel finding provides new insights into the etiology of NAFLD and is crucial in developing effective prevention and management strategies for NAFLD in children.


Assuntos
Adrenarca , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Criança , Feminino , Humanos , Ratos , Androgênios , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Esteroides , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Braz J Med Biol Res ; 57: e13229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381885

RESUMO

The incidence of non-alcoholic fatty liver (NAFLD) remains high, and many NAFLD patients suffer from severe ischemia-reperfusion injury (IRI). Currently, no practical approach can be used to treat IRI. Puerarin plays a vital role in treating multiple diseases, such as NAFLD, stroke, diabetes, and high blood pressure. However, its role in the IRI of the fatty liver is still unclear. We aimed to explore whether puerarin could protect the fatty liver from IRI. C57BL/6J mice were fed with a high-fat diet (HFD) followed by ischemia reperfusion injury. We showed that hepatic IRI was more severe in the fatty liver compared with the normal liver, and puerarin could significantly protect the fatty liver against IRI and alleviate oxidative stress. The PI3K-AKT signaling pathway was activated during IRI, while liver steatosis decreased the level of activation. Puerarin significantly protected the fatty liver from IRI by reactivating the PI3K-AKT signaling pathway. However, LY294002, a PI3K-AKT inhibitor, attenuated the protective effect of puerarin. In conclusion, puerarin could significantly protect the fatty liver against IRI by activating the PI3K-AKT signaling pathway.


Assuntos
Isoflavonas , Hepatopatia Gordurosa não Alcoólica , Traumatismo por Reperfusão , Animais , Camundongos , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fígado/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
8.
Arch Med Res ; 55(2): 102937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301446

RESUMO

BACKGROUND: The nasal vaccine HB-ATV-8 has emerged as a promising approach for NAFLD (non-alcoholic fatty liver disease) and atherosclerosis prevention. HB-ATV-8 contains peptide seq-1 derived from the carboxy-end of the Cholesteryl Ester Transfer Protein (CETP), shown to reduce liver fibrosis, inflammation, and atherosclerotic plaque formation in animal models. Beyond the fact that this vaccine induces B-cell lymphocytes to code for antibodies against the seq-1 sequence, inhibiting CETP's cholesterol transfer activity, we have hypothesized that beyond the modulation of CETP activity carried out by neutralizing antibodies, the observed molecular effects may also correspond to the direct action of peptide seq-1 on diverse cellular systems and molecular features involved in the development of liver fibrosis. METHODS: The HepG2 hepatoma-derived cell line was employed to establish an in vitro steatosis model. To obtain a conditioned cell medium to be used with hepatic stellate cell (HSC) cultures, HepG2 cells were exposed to fatty acids or fatty acids plus peptide seq-1, and the culture medium was collected. Gene regulation of COL1A1, ACTA2, TGF-ß, and the expression of proteins COL1A1, MMP-2, and TIMP-2 were studied. AIM: To establish an in vitro steatosis model employing HepG2 cells that mimics molecular processes observed in vivo during the onset of liver fibrosis. To evaluate the effect of peptide Seq-1 on lipid accumulation and pro-fibrotic responses. To study the effect of Seq-1-treated steatotic HepG2 cell supernatants on lipid accumulation, oxidative stress, and pro-fibrotic responses in HSC. RESULTS AND CONCLUSION: Peptide seq-1-treated HepG2 cells show a downregulation of COLIA1, ACTA2, and TGF-ß genes, and a decreased expression of proteins such as COL1A1, MMP-2, and TIMP-2, associated with the remodeling of extracellular matrix components. The same results are observed when HSCs are incubated with peptide Seq-1-treated steatotic HepG2 cell supernatants. The present study consolidates the nasal vaccine HB-ATV-8 as a new prospect in the treatment of NASH directly associated with the development of cardiovascular disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Vacinas , Animais , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/farmacologia , Metaloproteinase 2 da Matriz , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Regulação para Baixo , Hepatócitos/metabolismo , Fibrose , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Ácidos Graxos/metabolismo , Lipídeos/farmacologia , Fígado/metabolismo
9.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354227

RESUMO

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/fisiologia , Hepatócitos/metabolismo , Perfilação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
10.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338453

RESUMO

Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid ß-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proantocianidinas , Probióticos , Simbióticos , Humanos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/etiologia , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Fígado , Probióticos/uso terapêutico
11.
Nutrients ; 16(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398886

RESUMO

BACKGROUND: Liver diseases are constantly increasing throughout the world and are often associated with other diseases, but above all they are caused by improper diet. Adherence to a diet with abundant vegetables has now been widely demonstrated to be important in combating this pathological condition. The aim of this study was to explore the protective role of lycopene (LYC) extracts from cooked and fresh tomato. METHODS: The study cohort included 969 participants assessed in the NUTRIHEP cohort (2005-2006) and the associated follow-up (2014-2016), divided into two groups, based on liver condition: NAFLD, or AFLD and FLD. RESULTS: The results indicated a statistical significance of LYC consumption, showing a protective role against liver disease, the best concentration being 9.50 mg/die, with an RR value of 0.59, p = 0.01, 0.39 to 0.90 at 95% C.I., and RRR = 0.40, p = 0.002, 0.22 to 0.71 at 95% C.I. CONCLUSIONS: The protective role of LYC extracts from tomato has not been amply demonstrated in humans. We conclude that this is one of the few papers in the literature to evaluate the protective effect of LYC against liver disease, as well as how this molecule could be used in future possible treatments. Utilizing lycopene as a supplement alone or in combination with other foods could be useful for developing treatments with reduced contraindications.


Assuntos
Carotenoides , Hepatopatia Gordurosa não Alcoólica , Humanos , Licopeno , Carotenoides/uso terapêutico , Suplementos Nutricionais , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Antioxidantes/uso terapêutico
12.
J Pharm Pharmacol ; 76(4): 381-390, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38349666

RESUMO

OBJECTIVES: The objective of the present study was to investigate the effect of Rhubarb anthraquinone (RA) on a high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) rat model, and explore potential biomarker and metabolic pathways by using the metabolomics method. MATERIALS AND METHODS: We established HFD rats as the NAFLD model. Forty Sprague-Dawley rats were randomly divided into a control group, model group, RA low-dose group, RA medium-dose group, and RA high-dose group, and evaluated the protective effect of RA on NAFLD by detecting biochemical indicators of serum and pathological changes of liver tissue. Investigating potential biomarkers and metabolic pathways connected with RA's protective effects against NAFLD by UHPLC-Q-TOF-MS untargeted metabolomics. RESULTS: The results showed that RA significantly reversed the increase of TG, TC, ALT, AST, and ALP (P < .05), the decrease of HDL-C (P < .05), and alleviated pathological conditions in NAFLD rats. Based on potential biomarker analysis, RA affected metabolic pathways such as fatty acids biosynthesis, bile acids biosynthesis, and pentose phosphate pathway, delaying the progression of NAFLD. CONCLUSION: RA improved blood lipid levels, liver function, and pathological conditions of NAFLD rats. Meanwhile, affected the metabolic pathways and regulated the synthesis of fatty acids and bile acids in NAFLD rats.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Rheum , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ratos Sprague-Dawley , Fígado , Dieta Hiperlipídica/efeitos adversos , Metabolômica , Antraquinonas/efeitos adversos , Ácidos Graxos/metabolismo , Biomarcadores/metabolismo , Ácidos e Sais Biliares/metabolismo
13.
J Microbiol Biotechnol ; 34(2): 399-406, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247213

RESUMO

Lactiplantibacillus plantarum DSR330 (DSR330) has been examined for its antimicrobials production and probiotics. In this study, the hepatoprotective effects of DSR330 were examined against non-alcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-fed C57BL/6 mouse model. To induce the development of fatty liver, a HFD was administered for five weeks, and then silymarin (positive control) or DSR330 (108 or 109 CFU/day) was administered along with the HFD for seven weeks. DSR330 significantly decreased body weight and altered serum and hepatic lipid profiles, including a reduction in triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels compared to those in the HFD group. DSR330 significantly alleviated HFD-related hepatic injury by inducing morphological changes and reducing the levels of biomarkers, including AST, ALT, and ALP. Additionally, DSR330 alleviated the expression of SREBP-1c, ACC1, FAS, ACO, PPARα, and CPT-1 in liver cells. Insulin and leptin levels were decreased by DSR330 compared to those observed in the HFD group. However, adiponectin levels were increased, similar to those observed in the ND group. These results demonstrate that L. plantarum DSR330 inhibited HFD-induced hepatic steatosis in mice with NAFLD by modulating various signaling pathways. Hence, the use of probiotics can lead to hepatoprotective effects.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado , Colesterol/metabolismo
14.
Sci Rep ; 14(1): 2592, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296998

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases, whose severe form is associated with oxidative stress. Vitamin E as an antioxidant has a protective potential in NAFLD. Whether dietary intake of vitamin E, supplementary vitamin E use, and total vitamin E have a preventive effect on NAFLD requires investigation. A cross-sectional study used data from the National Health and Nutrition Examination Survey (2017-2020) was conducted. Vitamin E intake, including dietary vitamin E, supplementary vitamin E use, and total vitamin E, was obtained from the average of two 24-h dietary recall interviews. The extent of hepatic steatosis was measured by liver ultrasound transient elastography and presented as controlled attenuated parameter (CAP) scores. Participants were diagnosed with NAFLD based on CAP threshold values of 288 dB/m and 263 dB/m. The statistical software R and survey-weighted statistical models were used to examine the association between vitamin E intake and hepatic steatosis and NAFLD. Overall, 6122 participants were included for NAFLD analysis. After adjusting for age, gender, race, poverty level index, alcohol consumption, smoking status, vigorous recreational activity, body mass index, abdominal circumference, hyperlipidemia, hypertension, diabetes, and supplementary vitamin E use, dietary vitamin E was inversely associated with NAFLD. The corresponding odds ratios (OR) and 95% confidence intervals (CI) of NAFLD for dietary vitamin E intake as continuous and the highest quartile were 0.9592 (0.9340-0.9851, P = 0.0039) and 0.5983 (0.4136-0.8654, P = 0.0091) (Ptrend = 0.0056). Supplementary vitamin E was significantly inversely associated with NAFLD (fully adjusted model: OR = 0.6565 95% CI 0.4569-0.9432, P = 0.0249). A marginal improvement in total vitamin E for NAFLD was identified. The ORs (95% CIs, P) for the total vitamin E intake as continuous and the highest quartile in the fully adjusted model were 0.9669 (0.9471-0.9871, P = 0.0029) and 0.6743 (0.4515-1.0071, P = 0.0538). Sensitivity analysis indicated these findings were robust. The protective effects of vitamin E significantly differed in the stratum of hyperlipidemia (Pinteraction < 0.05). However, no statistically significant results were identified when the threshold value was set as 263 dB/m. Vitamin E intake, encompassing both dietary and supplemental forms, as well as total vitamin E intake, demonstrated a protective association with NAFLD. Augmenting dietary intake of vitamin E proves advantageous in the prevention of NAFLD, particularly among individuals devoid of hyperlipidemia.


Assuntos
Técnicas de Imagem por Elasticidade , Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Inquéritos Nutricionais , Estudos Transversais , Vitamina E , Hiperlipidemias/complicações
15.
Curr Nutr Rep ; 13(1): 1-14, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38172459

RESUMO

PURPOSE OF REVIEW: The liver is an important digestive gland in the body. Lifestyle and dietary habits are increasingly damaging our liver, leading to various diseases and health problems. Non-alcoholic fatty liver disease (NAFLD) has become one of the most serious liver disease problems in the world. Diet is one of the important factors in maintaining liver health. Functional foods and their components have been identified as novel sources of potential preventive agents in the prevention and treatment of liver disease in daily life. However, the effects of functional components derived from small molecules in food on different types of liver diseases have not been systematically summarized. RECENT FINDINGS: The components and related mechanisms in functional foods play a significant role in the development and progression of NAFLD and liver fibrosis. A variety of structural components are found to treat and prevent NAFLD and liver fibrosis through different mechanisms, including flavonoids, alkaloids, polyphenols, polysaccharides, unsaturated fatty acids, and peptides. On the other hand, the relevant mechanisms include oxidative stress, inflammation, and immune regulation, and a large number of literature studies have confirmed a close relationship between the mechanisms. The purpose of this article is to examine the current literature related to functional foods and functional components used for the treatment and protection against NAFLD and hepatic fibrosis, focusing on chemical properties, health benefits, mechanisms of action, and application in vitro and in vivo. The roles of different components in the biological processes of NAFLD and liver fibrosis were also discussed.


Assuntos
Ingredientes de Alimentos , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Alimento Funcional , Cirrose Hepática/prevenção & controle
16.
Mol Nutr Food Res ; 68(4): e2300561, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234006

RESUMO

SCOPE: Gut microbiota (GM) is involved in nonalcoholic steatohepatitis (NASH) development. Phytochemicals soyasaponins can prevent NASH possibly by modulating GM. This study aims to investigate the preventive bioactivities of soyasaponin monomers (SS-A1 and SS-Bb) against NASH and explores the mechanisms by targeting GM. METHODS AND RESULTS: Male C57BL/6 mice are fed with methionine and choline deficient (MCD) diet containing SS-A1 , SS-Bb, or not for 16 weeks. Antibiotics-treated pseudo germ-free (PGF) mice are fed with MCD diet containing SS-A1 , SS-Bb, or not for 8 weeks. GM is determined by 16S rRNA amplicon sequencing. Bile acids (BAs) are measured by UPLC-MS/MS. In NASH mice, SS-A1 and SS-Bb alleviate steatohepatitis and fibrosis, reduce ALT, AST, and LPS in serum, decrease TNF-α, IL-6, α-SMA, triglycerides, and cholesterol in liver. SS-A1 and SS-Bb decrease Firmicutes, Erysipelotrichaceae, unidentified-Clostridiales, Eggerthellaceae, Atopobiaceae, Aerococcus, Jeotgalicoccus, Gemella, Rikenella, increase Proteobacteria, Verrucomicrobia, Akkermansiaceae, Romboutsia, and Roseburia. SS-A1 and SS-Bb alter BAs composition in liver, serum, and feces, activate farnesoid X receptor (FXR) in liver and ileum, increase occludin and ZO-1 in intestine. However, GM clearance abrogates the preventive bioactivities of SS-A1 and SS-Bb against NASH. CONCLUSION: GM plays essential roles in soyasaponin's preventive bioactivities against steatohepatitis in MCD diet-induced NASH mice.


Assuntos
Deficiência de Colina , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/microbiologia , Metionina , Colina , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S , Cromatografia Líquida , Deficiência de Colina/complicações , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Fígado , Dieta , Racemetionina
17.
Toxicol Mech Methods ; 34(4): 454-467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38166588

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has emerged as a major chronic liver illness characterized by increase of lipid content in the liver. This study investigated the role of lauric acid to treat NAFLD in male adult Sprague Dawley rats. In this study, to induce NAFLD in the rats, a high-fat diet (HFD) was administered for eight consecutive weeks. Lauric acid groups received lauric acid (250 and 500 mg/kg; orally), concurrently with HFD for eight consecutive weeks. Lauric acid could ameliorate the serum levels of TG, TC, ALT, AST, blood glucose, and insulin. Moreover, lauric acid significantly elevated the levels of SOD, GSH, catalase, and IL-10. Additionally, it lowered the hepatic levels of MDA, ROS, MPO, 4-HNE, interleukin (IL)-1ß, and tumor necrosis factor (TNF-α). Furthermore, lauric acid significantly up-regulated the hepatic expression of IRS1, AMPK, PI3K, and SIRT1 genes. In parallel, lauric acid could improve the histopathological picture of the liver and reduce the liver apoptosis via decreasing the expression of annexin V (Anx V). Finally, our data proposed that lauric acid could be an effective candidate for the NAFLD treatment.


Assuntos
Ácidos Láuricos , Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Ratos Sprague-Dawley , Fígado , Fator de Necrose Tumoral alfa/metabolismo
18.
Gut Microbes ; 16(1): 2302065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38196273

RESUMO

Hepatic immunity is one of the driving forces for the development of nonalcoholic steatohepatitis (NASH), and targeting gut microbiota is believed to affect the hepatic immune constitution. Here, we aimed to investigate the hepatic immunological state in NASH, with a specific emphasis on natural killer (NK) cells. In addition, we aimed to identify the contributing species that target hepatic immunity to provide new directions and support the feasibility of immunotherapy for NASH. A possible NASH population was determined by combination of long-term severe fatty liver, metabolic disorders and increased serum CK18 to detect serum immune factors and gut microbiota. NASH was induced in mice fed a high-fat diet to verify the prophylactic effect of the functional species on the immunopathology and development of NASH. Hepatic immunologic state was examined, and the effector functions of NK cells were detected. Hepatic transcriptome, proteomic, and fecal metagenome were performed. We observed a statistical increase in serum IL-10 (p < 0.001) and non-statistical decrease in interferon-γ and IL-6 in NASH population, hinting at the possibility of immune tolerance. Fecal Bacteroides uniformis and Bifidobacterium bifidum were abundant in healthy population but depleted in NASH patients. In NASH mice, hepatic CD8+T cells, macrophages, and dendritic cells were increased (p < 0.01), and NK cells were inhibited, which were identified with decreased granzyme B (p < 0.05). Bacteroides uniformis and Bifidobacterium bifidum improved hepatic pathological and metabolic cues, increased hepatic NK cells and reduced macrophages (p < 0.05). Bacteroides uniformis also restored hepatic NK cell function, which was identified as increased CD107a (p < 0.05). Transcriptional and translational profiling revealed that the functional species might restore the function of hepatic NK cells through multiple pathways, such as reduction of inhibitory molecules in NK cells. Bacteroides uniformis and Bifidobacterium bifidum are novel prophylactics for NASH that restore the impaired function of hepatic NK cells.


Assuntos
Bifidobacterium bifidum , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Proteômica , Células Matadoras Naturais , Tolerância Imunológica
19.
Mol Nutr Food Res ; 68(1): e2300491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888831

RESUMO

SCOPE: Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS: The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS: Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Feminino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Caseínas/farmacologia , Fígado/metabolismo , Dieta Ocidental/efeitos adversos , Aminoácidos/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
20.
Artigo em Inglês | MEDLINE | ID: mdl-37859322

RESUMO

BACKGROUND: Traditional Chinese medicine (TCM) has the advantage of low toxicity of natural ingredients, multiple targets and effects, and low medication costs. It has unique advantages for metabolic and chronic diseases. Huangqin-Huanglian decoction (HQHLD) is composed of Scutellariae Radix, Coptidis Rhizoma, Rehmanniae Radix, and Gentianae Radix Et Rhozima; it has great potential for the treatment of NAFLD with the modern pharmacological research and TCM theory, but there is still a relative lack of research on the potential targets and pharmacological effects of HQHLD. METHODS: In this work, we have used network pharmacology to predict the targets and signaling pathways of HQHLD, and validated NAFLD-related targets using the HFD model in order to explore more therapeutic drugs and methods for NAFLD. We collected the HQHLD ingredients and NAFLD targets through TCMSP, ETCM, DisGeNET, HGMD, MalaCards, OMIM, and TTD, built ingredients-target networks by Cytoscape, and screened key ingredients in HQHLD. DAVID and Metascape databases were used for GO functional enrichment analysis and KEGG pathway enrichment analysis, respectively. Molecular docking of the key ingredients and key targets was performed by AutoDock. We verified the effect of HQHLD on high-fat diet (HFD) mice by measuring the weight, liver weight index, and the level of TG, TC, LDL-C, and HDLC. HE staining and oil-red staining were performed to detect the damage and fat accumulation in the liver. The changes in INSR, PPAR-α, PPAR-γ, TNF-α, and caspase3 were experimented with WB. RESULTS: With the network pharmacology analysis, we found quercetin, baicalein, sitosterol, wogonin, oroxylin-A, glycyrrhizin, hydroberberine, berberine, sesamin, and carotene to be the main ingredients in HQHLD. According to KEGG pathway analysis, INSR, AKT, JNK1, PPAR-α, PPAR-γ, and the other 16 targets are the main targets of HQHLD in the treatment of NAFLD. We took HFD mice as the in vivo model of NAFLD. Our results showed that HQHLD could reduce liver weight, and TG and LDL-C levels, and increase HDL-C level in serum. By HE and oil red staining, we found that HQHLD could protect the morphology of hepatocytes and reduce fat in the liver. We also found HQHLD to protect the liver by increasing the expression of INSR and PPAR-α, and reducing the expression of PPAR-γ, TNF-α, and caspase3 in the liver. CONCLUSION: In conclusion, our study has firstly studied the main ingredients and key targets of HQHDL in treating NAFLD by network pharmacology analysis, and preliminarily confirmed that HQHLD could alleviate NAFLD in a multi-target way by lowering fatty acids, and decreasing insulin resistance, inflammation, and apoptosis in the liver.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Scutellaria baicalensis , Dieta Hiperlipídica/efeitos adversos , LDL-Colesterol , Simulação de Acoplamento Molecular , Receptores Ativados por Proliferador de Peroxissomo , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...